日本护士吞精囗交gif-成人无码视频在线观看网站-亚洲精品久久66国产高清-免费国产a-成年美女黄网站色大片免费软件看-国产伊人久-亚洲精品无码久久千人斩探花-亚洲成人不卡-性推油按摩av无码专区-久久不见久久见www电影-成人欧美一区二区三区在线-午夜婷婷在线观看-91欧美亚洲-在线成人精品视频-成人av综合网

沒有賬號?請注冊會員
首頁  >>  新聞資訊  >>  會員動態  >>  正文

深度連續多視角任務學習讓機器人更快認知世界

發布時間:2020-5-12     來源:中國日報網

近日,依托于中國科學院沈陽自動化研究所的機器人學國家重點實驗室提出了一種連續多視角任務學習算法,可有效解決現存大部分多視角任務學習模型不能夠滿足讓機器人快速學習新任務的問題。


目前,多視角多任務學習在機器學習和計算機視覺領域得到了廣泛的應用,然而在諸多實際場景中,當多視角學習任務按序列順序到來時,重新訓練以前的任務在這種終身學習場景中會產生較高的存儲需求和計算成本。


為應對這一挑戰,科研人員在該研究中提出了一種集成了深度矩陣分解和稀疏子空間學習的連續多視角任務學習模型,稱之為深度連續多視角任務學習(DCMvTL)。當新的多視角任務到來時,首先采用深度矩陣分解技術捕捉新任務中的隱含和分層表達知識,同時以一種逐層的方式存儲這些新鮮的多視角知識。在這一基礎上,稀疏子空間學習模型會應用于每一層抽取的因子矩陣上,并通過一個自表達約束捕獲跨視角關聯。


在基準測試數據集上的實驗結果表明,深度連續多視角任務學習模型不僅能實現較高的認知準確率,同時能保持較高的學習效率,即讓機器人“更快”認知不同的世界。


相關成果以Continual Multiview Task Learning via Deep Matrix Factorization為題發表于IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS。該研究得到了國家自然科學基金和機器人學重點實驗室的支持。


DOI: 10.1109/TNNLS.2020.2977497


中國儀器儀表行業協會版權所有   |   京ICP備13023518號-1   |   京公網安備 110102003807
地址:北京市西城區百萬莊大街16號1號樓6層   |   郵編:100037   |   電話:010-68596456 / 68596458
戰略合作伙伴、技術支持:中國機械工業聯合會機經網(MEI)